Coupled Convolutional Neural Network With Adaptive Response Function Learning for Unsupervised Hyperspectral Super Resolution

نویسندگان

چکیده

Due to the limitations of hyperspectral imaging systems, imagery (HSI) often suffers from poor spatial resolution, thus hampering many applications imagery. Hyperspectral super-resolution refers fusing HSI and MSI generate an image with both high spectral resolutions. Recently, several new methods have been proposed solve this fusion problem, most these assume that prior information Point Spread Function (PSF) Spectral Response (SRF) are known. However, in practice, is limited or unavailable. In work, unsupervised deep learning-based method - HyCoNet can problems HSI-MSI without PSF SRF proposed. consists three coupled autoencoder nets which unmixed into endmembers abundances based on linear unmixing model. Two special convolutional layers designed act as a bridge coordinates nets, parameters learned adaptively two convolution during training process. Furthermore, driven by joint loss function, straightforward easily implemented end-to-end manner. The experiments performed study demonstrate performs well produces robust results for different datasets arbitrary PSFs SRFs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating the Super-Resolution Convolutional Neural Network

As a successful deep model applied in image super-resolution (SR), the Super-Resolution Convolutional Neural Network (SRCNN) [1, 2] has demonstrated superior performance to the previous hand-crafted models either in speed and restoration quality. However, the high computational cost still hinders it from practical usage that demands real-time performance (24 fps). In this paper, we aim at accel...

متن کامل

Deep Depth Super-Resolution: Learning Depth Super-Resolution Using Deep Convolutional Neural Network

Depth image super-resolution is an extremely challenging task due to the information loss in sub-sampling. Deep convolutional neural network have been widely applied to color image super-resolution. Quite surprisingly, this success has not been matched to depth super-resolution. This is mainly due to the inherent difference between color and depth images. In this paper, we bridge up the gap and...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network

Hyperspectral images are well-known for their fine spectral resolution to discriminate different materials. However, their spatial resolution is relatively low due to the trade-off in imaging sensor technologies, resulting in limitations in their applications. Inspired by recent achievements in convolutional neural network (CNN) based super-resolution (SR) for natural images, a novel three-dime...

متن کامل

Learning a Single Convolutional Super-Resolution Network for Multiple Degradations

Recent years have witnessed the unprecedented success of deep convolutional neural networks (CNNs) in single image super-resolution (SISR). However, existing CNN-based SISR methods mostly assume that a low-resolution (LR) image is bicubicly downsampled from a high-resolution (HR) image, thus inevitably giving rise to poor performance when the true degradation does not follow this assumption. Mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing

سال: 2021

ISSN: ['0196-2892', '1558-0644']

DOI: https://doi.org/10.1109/tgrs.2020.3006534